نقش miRNAs در مسیر سیگنالینگ PI3K در سرطان‌های خونی: یک مطالعه‌ی مروری

##plugins.themes.bootstrap3.article.main##

هانیه غفاری نظری
سمیرا کرمی لیلا نورآذر امامچای سایه پرخیده الهام روشندل مسعود سلیمانی

چکیده

مقدمه: مسیر سیگنالینگ PI3K/Akt/mTOR، به عنوان تنظیم‌کننده‌ی چرخه‌ی سلولی، یکی از مسیرهای سیگنالینگ مهم درون سلولی می‌باشد. ارتباط مستقیم این مسیر با مکانیسم‌های مهمی همچون خفتگی، تکثیر سلولی و طول عمر سلول‌ها به اثبات رسیده است. فعالیت بیش از حد مسیر PI3K با کاهش آپوپتوز و افزایش تکثیر سلولی، در آسیب‌زایی بسیاری از سرطان‌ها از جمله بدخیمی‌های خونی نظیر لوسمی است.


شیوه‌ی مطالعه: بررسی‌های آزمایشگاهی نشان داده است که در تنظیم مسیر سیگنالینگ PI3، عوامل مختلفی از جمله miRNAها نقش دارند. این مولکول‌ها با دخالت در سرکوب و یا افزایش بیان mRNAها، فاکتورهای رونویسی و یا تحریک رونویسی از برخی ژن‌ها می‌توانند تغییر دهنده‌ی سرنوشت سلول باشند. در این مطالعه به بررسی نقش miRNAها در تنظیم مسیر PI3K/Akt/mTOR و تأثیر آن بر پیشرفت لوسمی و شکست درمان پرداخته می‌شود.‌


نتیجه‌گیری: امروزه مشخص شده است که miRNAها، یکی از علل شکست درمان سرطان‌ها و یا عود آن‌ها هستند.


کلمات کلیدی: مسیر پیام رسانی PI3K، بدخیمی‌های خونی، miRNAs

##plugins.themes.bootstrap3.article.details##

نوع مقاله
مقاله مروری

مراجع

1. Sant M, Allemani C, Tereanu C, de Angelis R, Capocaccia R, Visser O, et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood 2010; 116(19): 3724-34.
2. Kalhori MR, Arefian E, Fallah Atanaki F, Kavousi K, Soleimani M. miR-548x and miR-4698 controlled cell proliferation by affecting the PI3K/AKT signaling pathway in Glioblastoma cell lines. Sci Rep 2020; 10(1): 1558.
3. Kalhori MR, Irani S, Soleimani M, Arefian E, Kouhkan F. The effect of miR‐579 on the PI3K/AKT pathway in human glioblastoma PTEN mutant cell lines. J Cell Biochem 2019; 120(10): 16760-74.
4. Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 2004; 30(2): 193-204.
5. Babashah S, Sadeghizadeh M, Tavirani MR, Farivar S, Soleimani M. Aberrant microRNA expression and its implications in the pathogenesis of leukemias. Cell Oncol (Dordr) 2012; 35(5): 317-34.
6. Matsui WH. Cancer stem cell signaling pathways. Medicine 2016; 95(1 Suppl 1): S8-S19.
7. Xu F, Na L, Li Y, Chen L. Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell Biosci 2020; 10: 54.
8. Aghaee-Bakhtiari SH, Arefian E, Soleimani M, Mirab Samiee S, Noorbakhsh F, Mahdian R, et al. Bioinformatic Evaluations for Locating the microRNA Suppressing PI3K/AKT Pathway and Analysis in Prostate Cancer Cell Lines. Modares J Med Sci 2015; 17(4): 1-12. [In Persian].
9. Martini M, de Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med 2014; 46(6): 372-83.
10. Owusu-Brackett N, Shariati M, Meric-Bernstam F. Role of PI3K/AKT/mTOR in cancer signaling. In: Badve S, Kumar G. editors. Predictive Biomarkers in Oncology. Springer, Cham; 2019.
11. Wong KK, Engelman JA, Cantley LC. Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 2010; 20(1): 87-90.
12. Bartholomeusz C, Gonzalez-Angulo AM. Targeting the PI3K signaling pathway in cancer therapy. Exp Opin Ther Target 2012; 16(1): 121-30.
13. Jafarzadeh M, Soltani BM, Soleimani M, Hosseinkhani S. Epigenetically silenced LINC02381 functions as a tumor suppressor by regulating PI3K-Akt signaling pathway. Biochimie 2020; 171-172: 63-71.
14. Roshandel E, Noorazar L, Farhadihosseinabadi B, Mehdizadeh M, Kazemi MH, Parkhideh S. PI3 kinase signaling pathway in hematopoietic cancers: A glance in miRNA's role. J Clin Lab Anal 2021; 35(4): e23725.
15. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nuc Acid Res 2005; 33(4): 1290-97.
16. de Rie D, Abugessaisa I, Alam T, Arner E, Arner P, Ashoor H, et al. An integrated expression atlas of miRNAs and their promoters in human and mouse. Nat Biotechnol 2017; 35(9): 872-78.
17. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23(20): 4051-60.
18. Ozsolak F, Poling LL, Wang Z, Liu H, Liu XS, Roeder RG, et al. Chromatin structure analyses identify miRNA promoters. Genes Dev 2008; 22(22): 3172-83.
19. Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 2008; 9(2): 102-14.
20. O'Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrin (Lausanne) 2018; 9: 402.
21. Gholamin S, Mirzaei H, Razavi SM, Hassanian SM, Saadatpour L, Masoudifar A, et al. GD2‐targeted immunotherapy and potential value of circulating microRNAs in neuroblastoma. J Cell Physiol 2018; 233(2): 866-79.
22. Moridikia A, Mirzaei H, Sahebkar A, Salimian J. MicroRNAs: Potential candidates for diagnosis and treatment of colorectal cancer. J Cell Physiol 2018; 233(2): 901-13.
23. Jafari SH, Saadatpour Z, Salmaninejad A, Momeni F, Mokhtari M, Nahand JS, et al. Breast cancer diagnosis: Imaging techniques and biochemical markers. J Cell Physiol 2018; 233(7): 5200-13.
24. Fathullahzadeh S, Mirzaei H, Honardoost M, Sahebkar A, Salehi M. Circulating microRNA-192 as a diagnostic biomarker in human chronic lymphocytic leukemia. Cancer Gene Ther 2016; 23(10): 327-32.
25. Mi S, Lu J, Sun M, Li Z, Zhang H, Neilly MB, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Nat Acad Sci U S A 2007; 104(50): 19971-6.
26. Wang X, Zhu B, Huang Z, Chen L, He Z, Zhang H. MicroRNAs as biomarkers in leukemia. Stem Cell Invest 2014; 1: 11.
27. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017; 129(4): 424-47.
28. Bullinger L, Döhner K, Döhner H. Genomics of acute myeloid leukemia diagnosis and pathways. J Clin Oncol 2017; 35(9): 934-46.
29. Song Y, Zhao Y, Ding X, Wang X. microRNA-532 suppresses the PI3K/Akt signaling pathway to inhibit colorectal cancer progression by directly targeting IGF-1R. Am J Cancer Res 2018;8(3): 435-49.
30. Ge J, Chen Z, Wu S, Chen J, Li X, Li J, et al. Expression levels of insulin-like growth factor-1 and multidrug resistance-associated protein-1 indicate poor prognosis in patients with gastric cancer. Digestion 2009; 80(3): 148-58.
31. Chen L, Jiang X, Chen H, Han Q, Liu C, Sun M. microRNA-628 inhibits the proliferation of acute myeloid leukemia cells by directly targeting IGF-1R. OncoTargets Ther 2019; 12: 907.
32. Gong JN, Yu J, Lin HS, Zhang XH, Yin XL, Xiao Z, et al. The role, mechanism and potentially therapeutic application of microRNA-29 family in acute myeloid leukemia. Cell Death Diff 2014; 21(1): 100-12.
33. Gerloff D, Grundler R, Wurm AA, Bräuer-Hartmann D, Katzerke C, Hartmann JU, et al. NF-κB/STAT5/miR-155 network targets PU. 1 in FLT3-ITD-driven acute myeloid leukemia. Leukemia 2015; 29(3): 535-47.
34. Jiang MJ, Dai JJ, Gu DN, Huang Q, Tian L. MicroRNA-7 inhibits cell proliferation of chronic myeloid leukemia and sensitizes it to imatinib in vitro. Biochem Biophys Res Commun 2017;494(1-2):372-78.
35. Yates LA, Norbury CJ, Gilbert RJ. The long and short of microRNA. Cell 2013; 153(3): 516-9.
36. Kharas MG, Janes MR, Scarfone VM, Lilly MB, Knight ZA, Shokat KM, et al. Ablation of PI3K blocks BCR-ABL leukemogenesis in mice, and a dual PI3K/mTOR inhibitor prevents expansion of human BCR-ABL+ leukemia cells. J Clin Invest 2008; 118(9): 3038-50.
37. Kaymaz BT, Günel NS, Ceyhan M, Çetintaş VB, Özel B, Yandım MK, et al. Revealing genome-wide mRNA and microRNA expression patterns in leukemic cells highlighted “hsa-miR-2278” as a tumor suppressor for regain of chemotherapeutic imatinib response due to targeting STAT5A. Tumor Biol 2015; 36(10): 7915-27.
38. Inaba H, Greaves M, Mullighan CG. Acute lymphoblastic leukaemia. Lancet 2013; 381(9881): 1943-55.
39. Kaspers GJL, Pieters R, Veerman AJP. Drug Resistance in Leukemia and Lymphoma III. Boston, MA: Springer; 1999.
40. Chen P, Shen T, Wang H, Ke Z, Liang Y, Ouyang J, et al. MicroRNA-185-5p restores glucocorticoid sensitivity by suppressing the mammalian target of rapamycin complex (mTORC) signaling pathway to enhance glucocorticoid receptor autoregulation. Leuk Lym 2017; 58(11): 2657-67.
41. Nemes K, Csóka M, Nagy N, Márk Á, Váradi Z, Dankó T, et al. Expression of certain leukemia/lymphoma related microRNAs and its correlation with prognosis in childhood acute lymphoblastic leukemia. Pathol Oncol Res 2015; 21(3): 597-604.
42. Chiorazzi N, Rai KR, Ferrarini M. Chronic lymphocytic leukemia. N Engl J Med 2005; 352(8): 804-15.
43. Munk Pedersen I, Reed J. Microenvironmental interactions and survival of CLL B-cells. Leuk Lym 2004; 45(12): 2365-72.
44. Longo PG, Laurenti L, Gobessi S, Sica S, Leone G, Efremov DG. The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008; 111(2): 846-55.
45. Liu L, Meng T, Zheng X, Liu Y, Hao R, Yan Y, et al. Transgelin 2 promotes paclitaxel resistance, migration, and invasion of breast Cancer by directly interacting with PTEN and activating PI3K/Akt/GSK-3β pathway. Mol Cancer Ther 2019; 18(12): 2457-68.
46. Palomero T, Sulis ML, Cortina M, Real PJ, Barnes K, Ciofani M, et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat Med 2007; 13(10): 1203-10.
47. Zou ZJ, Zhang R, Fan L, Wang L, Fang C, Zhang LN, et al. Low expression level of phosphatase and tensin homolog deleted on chromosome ten predicts poor prognosis in chronic lymphocytic leukemia. Leuk Lym 2013; 54(6): 1159-64.
48. Zou Z-J, Fan L, Wang L, Xu J, Zhang R, Tian T, et al. miR-26a and miR-214 down-regulate expression of the PTEN gene in chronic lymphocytic leukemia, but not PTEN mutation or promoter methylation. Oncotarget 2015; 6(2): 1276-85.
49. Weiss MB, Abel EV, Dadpey N, Aplin AE. FOXD3 modulates migration through direct transcriptional repression of TWIST1 in melanoma. Mol Cancer Res 2014; 12(9): 1314-23.
50. Luo GF, Chen CY, Wang J, Yue HY, Tian Y, Yang P, et al. FOXD3 may be a new cellular target biomarker as a hypermethylation gene in human ovarian cancer. Cancer Cell Int 2019; 19: 44.
51. Namazi F, Ketabchi F, Moghimi M, Hadi N. Expression of miR-485-3p and its Target FOXD3 in Chronic Lymphocytic Leukemia. Int J Med Lab 2020; 7(1): 23-9.
52. Han B, Wang S, Zhao H. MicroRNA-21 and microRNA-155 promote the progression of Burkitt’s lymphoma by the PI3K/AKT signaling pathway. Int J Clin Exp Pathol 2020; 13(1): 89-98.
53. Go H, Jang JY, Kim PJ, Kim YG, Nam SJ, Paik JH, et al. MicroRNA-21 plays an oncogenic role by targeting FOXO1 and activating the PI3K/AKT pathway in diffuse large B-cell lymphoma. Oncotarget 2015; 6(17): 15035-49.
54. Barlogie B, Mitchell A, van Rhee F, Epstein J, Morgan GJ, Crowley J. Curing myeloma at last: defining criteria and providing the evidence. Blood 2014; 124(20): 3043-51.
55. Jagannath S. Pathophysiological underpinnings of multiple myeloma progression. J Manag Care Pharm 2008; 14(7 Suppl): 7-11.
56. Naymagon L, Abdul-Hay M. Novel agents in the treatment of multiple myeloma: a review about the future. J Hematol Oncol 2016;
9(1): 52.
57. Björkstrand B, Gahrton G. High-dose treatment with autologous stem cell transplantation in multiple myeloma: past, present, and future. Semin Hematol 2007; 44(4): 227-33.
58. Jiang Y, Chang H, Chen G. Effects of microRNA‑20a on the proliferation, migration and apoptosis of multiple myeloma via the PTEN/PI3K/AKT signaling pathway. Oncol Lett 2018; 15(6): 10001-7.
59. Amodio N, Di Martino M, Foresta U, Leone E, Lionetti M, Leotta M, et al. miR-29b sensitizes multiple myeloma cells to bortezomib-induced apoptosis through the activation of a feedback loop with the transcription factor Sp1. Cell Death Dis 2012; 3(11): e436-e36.
60. Yang N, Chen J, Zhang H, Wang X, Yao H, Peng Y, et al. LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma. Cell Death Dis 2017; 8(8): e2975-e75.
61. Gowda PS, Wildman BJ, Trotter TN, Xu X, Hao X, Hassan MQ, et al. Runx2 suppression by miR-342 and miR-363 inhibits multiple myeloma progression. Mol Cancer Res 2018; 16(7): 1138-48.
62. Sander S, Calado DP, Srinivasan L, Köchert K,
Zhang B, Rosolowski M, et al. Synergy between PI3K signaling and MYC in Burkitt lymphomagenesis. Cancer cell 2012; 22(2): 167-79.
63. Lee KB, Byun HJ, Park SH, Park CY, Lee SH, Rho SB. CYR61 controls p53 and NF-κB expression through PI3K/Akt/mTOR pathways in carboplatin-induced ovarian cancer cells. Cancer Lett 2012; 315(1): 86-95.
64. dos Santos Ferreira AC, Robaina MC, de Rezende LMM, Severino P, Klumb CE. Histone deacetylase inhibitor prevents cell growth in Burkitt’s lymphoma by regulating PI3K/Akt pathways and leads to upregulation of miR-143, miR-145, and miR-101. Ann Hematol 2014; 93(6): 983-93.
65. Wang WZ, Pu QH, Lin XH, Liu MY, Wu LR, Wu QQ, et al. Silencing of miR-21 sensitizes CML CD34+ stem/progenitor cells to imatinib-induced apoptosis by blocking PI3K/AKT pathway. Leuk Res 2015; 39(10): 1117-24.
66. Yuan T, Yang Y, Chen J, Li W, Zhang Q, Mi Y, et al. Regulation of PI3K signaling in T-cell acute lymphoblastic leukemia: a novel PTEN/Ikaros/miR-26b mechanism reveals a critical targetable role for PIK3CD. Leukemia 2017; 31(11): 2355-64.